
State of Code
Security Report 2025

Table of Contents

Executive Summary 3

2024: Year in Review 4

Current Landscape 6

Methodology 6

Overall Usage: Key Findings 6

GitHub leads the pack with 80% of total repos 6

VCS Trends: GitHub dominates, multi-platform strategies are on the rise 7

The ratio of public repos in GitHub is 3 times higher than in other VCS platforms 7

Repositories: Key findings 8

Secrets in public repositories are only the tip of the iceberg 8

Cloud keys represent a big part of exposed secrets 8

Scripting languages are more popular than programming languages 10

CI/CD security: The story of insecure defaults 11

One in every 10 organizations has GitHub Actions enabled 11

Around 80% of workflow permissions in repositories are insecure 11

Branch protection is weak, false sense of security exists in public repos 12

Self-hosted runners in cloud present a serious risk to 35% of enterprises 12

GitHub Actions – no limits 13

Dangerous permission scopes are prevalent in GitHub Apps 14

How Wiz Can Help 15

Conclusion 16

Wiz Code Security Report 2

Executive Summary
For this report, Wiz researchers examined the ratio of public versus private repositories, occurrence of
secrets in code, GitHub Apps security, workflow security settings, and more. In the following pages we will
present our findings and draw some conclusions. Here is a preview of the most impactful takeaways
stemming from this effort:

Even “best case scenario” numbers show a worrisome habit of keeping cloud secrets in code
repositories. Alarmingly, 61% of organizations have secrets exposed in public repositories. A threat
actor scanning public repos could stumble across these secrets – which might include SaaS API
keys, access tokens, or cloud credentials – and exploit them to wreak havoc. For instance, with a
leaked AWS access key an attacker could extract sensitive data from cloud storage, incurring
significant financial loss and reputational damage.

Version Control Systems (VCS) and CI/CD security posture practices are lacking, with workflows and
actions boasting high privileges. This is extremely concerning because it is an important part of the
software development lifecycle and involves direct access to the production environment.

Not all VCS are created equal – at least not when it comes to security. GitHub is not only the leader
by number of repositories, but also by percentage of public repositories (over 30%). That creates an
appealing target for malicious actors, and the potential for catastrophe. Imagine a developer
inadvertently commits an AWS access key to a public GitHub repo, which is then found by a threat
actor who uses it to log in to the tenant's cloud environment and deploy instances for cryptomining.

Throughout the process of collection and analysis, it became clear that the broader connection between
code repositories and cloud environments provides essential context for interpreting the statistics.
Some examples:

� Weak security practices around self-hosted runners, which require particular attention. Runners serve
as the middle ground between code and cloud, and can allow attackers to pivot in either direction.�

� Code repositories with cloud and SaaS secrets leading to cloud environments.�

� Vulnerabilities in code repositories manifesting themselves post-deployment, in cloud.

As such, the report illustrates the reality that code and cloud are two deeply connected domains in
today’s agile, cloud-native world.

Now let’s explore the takeaways in greater detail. At the end, we will provide recommended best
practices.

Wiz Code Security Report 3

2024: Year in Review
The past 12 months have been noteworthy for both the number and impact of supply chain attacks.
Arguably, the most prominent one was an attack on that exposed the security community to the
lengths which malicious actors are willing to go to plant a well-hidden backdoor in a widely used software
package. The Wiz Research team investigated this incident extensively and created an overview of the
backdoor functionality:

XZ Utils

XZ Build Process

build-to-host.m4

The build-to-host.m4 script is
executed with malicious code that
injects obfuscated code into the
'configure' script

Obfuscated Code

Configure

Next, the configure script is executed
with the obfuscated code. It
manipulates liblzma linker and compiler
flags within the MakeFile to interfere
with the symbol resolution process

Manipulated flags

Makefile

The MakeFile is executed and causes
the 'RSA_public_decrypt@....pl'
symbol to point to another malicious
code in runtime

Symbols resolution Interference

RSA_public_decrypt@....pl

Malicious code

Compiled liblzma

Threat Actor

Auth: Public key
contains payload

RCE

1

5

2

Commit
backdoor

0

R S A _ p u b l i c _ d e c r y p t @ . . . p l

SSHD

Public key authentication process calls

System ()

Calls

3
Extracts and

verifies payload
4

Passes payload

Figure 1: xz-utils attack flow

This incident made headlines worldwide because it illustrated the dangers of an inside actor, in this case
a determined individual that was nearly able to infiltrate a widely used open-source project and insert
the potential SSH backdoor into a multitude of systems.

A somewhat overlooked angle of this attack is the “disgruntled employee” scenario. Consider XZ Utils
project being your GitHub organization and the wicked “JiaTan” (the username of the original bad actor,
likely a threat group) being one of your employees. How would you protect against such a scenario?

We believe the answer lies in multi-layered VCS defenses – for example, branch protection and PR
reviews in addition to the default authentication – and behavioral monitoring of users (for example,
using GitHub audit logs).

Unlike the XZ Utils incident, exposed secrets are a well-known and well-researched attack vector. This
does not prevent attackers from continuing to abuse leaked secrets for their leverage. Again, this year,
there were multiple incidents of secrets exposure that eventually led to further compromises (e.g.

, ,). These are great examples of the
visibility problem – security scanners must have visibility into all repositories and must know how to
validate secrets and estimate the secret impact.

EMERALDWHALE RDS Database Exfiltration ShinyHunters Ransomware

Wiz Code Security Report 4

https://www.wiz.io/blog/cve-2024-3094-critical-rce-vulnerability-found-in-xz-utils
https://threats.wiz.io/all-incidents/emeraldwhale-attacks-targeting-exposed-git-config-files
https://threats.wiz.io/all-incidents/github-pat-leakage-leading-to-rds-database-exfiltration
https://threats.wiz.io/all-incidents/shinyhunters-ransomware-targeting-cloud-environments

Other supply chain attacks this year targeted the NPM and PyPI ecosystems by exploiting multiple
language packages. The usual attack vectors include dependency confusion, outright malicious packages
available for download, and takeovers of legitimate repositories – either via dangling repositories or a leak
of secrets – for packages actively in use. One recent example of malicious NPM packages included a
package masquerading as a cookie parser that was actually trying to delete the local filesystem. A rarer
attack, however, made waves this summer. A Chinese company named Funnull acquired the Polyfill
domain and GitHub repo, and inserted malware into polyfill.js that redirected users to gambling websites.
Further pivoting revealed that Funnull had exposed a CloudFlare API key that linked the company to
several CDN providers which were also serving malicious scripts.

These incidents stress the dangers that arise from system dependencies. The solution, as we
see it, is to challenge security tools to integrate with the SDLC on multiple levels – in IDE, in
VCS, CI/CD and production environment.

Finally, the CI/CD security research community benefitted from some great findings presented at
industry conferences, where presenters discussed novel attack vectors on VCS and CI/CD systems.
Some of our favorites include, “

” and “ ”. This work involved extensive
research on misconfigurations related to GitHub self-hosted runners that resulted in persistent access in
CI/CD environments and theft of deployment secrets.

Being such an unexpected and underestimated attack vector, this area is still not widely abused by APTs
and other threat actors, potentially because of the lack of good VCS compromise monitoring solutions.
However, we believe this will soon change as threat actors catch up with recent research. We must
therefore add secure VCS configuration, workflows security, and run-time security of self-hosted
runners to the long feature list of modern code security tools.

Self-Hosted GitHub CI/CD Runners: Continuous Integration, Continuous
Destruction H-MY-DC: Abusing OIDC all the way to your cloud

Wiz Code Security Report 5

https://www.blackhat.com/us-24/briefings/schedule/#self-hosted-github-cicd-runners-continuous-integration-continuous-destruction-38308
https://www.blackhat.com/us-24/briefings/schedule/#self-hosted-github-cicd-runners-continuous-integration-continuous-destruction-38308
https://media.defcon.org/DEF%20CON%2032/DEF%20CON%2032%20presentations/DEF%20CON%2032%20-%20Aviad%20Hahami%20-%20OH-MY-DC%20-%20Abusing%20OIDC%20all%20the%20way%20to%20your%20cloud.pdf

Current Landscape
In this section, we share key statistics—from general usage patterns to specific security control metrics—
to provide actionable insights that help counter the attacks discussed above.

Methodology

This report includes insights from Wiz Research based on data collected throughout 2024. Over this
period of time, hundreds of thousands of code repositories were analyzed.

We gained these insights in large part from the release of Wiz Code, which granted us a unique
opportunity to connect cloud deployments with their source code. This new offering extends the
trademark precision of Wiz Cloud into version control systems (VCS), and Continuous Integration /
Continuous Deployment (CI/CD) pipelines – allowing our customers to truly “shift left” at scale without
losing cloud context in the process.

Adoption of Wiz Code enabled the Wiz Threat Research team to compile key statistics that shed light on
how organizations store and use their code, along with the usage and security posture metrics of their
VCS and CI/CD systems.

Overall Usage: Key Findings

GitHub leads the pack with 80% of total repos

This statistic is not inherently surprising, yet it is helpful to give context to subsequent findings. We see
that GitHub is a leader in a total number of repositories, reflecting the widespread popularity of GitHub
within the enterprise development community:

81%

13%

6%

Repositories by platform

Note: Wiz Code also supports GitLab and AzureDevOps version control systems, which comprise 20% of total repositories.

Wiz Code Security Report 6

VCS Trends: GitHub dominates, multi-platform strategies are on the rise

Much like how companies often rely on multiple cloud providers, so too do they sometimes use multiple
VCSs for code management and CI/CD for various business reasons. We observed the following numbers
on multi-VCS usage:�

� Only about 5% of the organizations use more than one platform.�

� Of those, only a few organizations in our sample set have all three platforms installed, the rest have
two platforms.�

� Of those with more than one platform, all but a few have GitHub as one of the platforms.

These numbers confirm the popularity of GitHub, along with its “stickiness” – companies can have
multiple version control systems, but GitHub is always one of them. It is not too far-fetched to suggest
that the popularity of open source is one of the major drivers behind GitHub adoption.

The ratio of public repos in GitHub is 3 times higher than in other VCS platforms

The percentage of public repositories is about 35% in GitHub and less than 10% in other platforms. This
does not necessarily mean that GitHub users are less secure, but it does confirm our earlier point: GitHub
is the default platform for open-source code. Note that not all public repositories are automatically
reachable from the wider internet, as the notion of public vs. private repository is defined by the platform
and is fetched from the platform API. Still, it’s a useful metric that shows the purpose of a code repository
and is a factor that affects security posture.

The subsequent graph shows the statistics across active, non-fork, and unarchived repositories (i.e.
filtered) with similar outcomes.

Public vs. private repo ratios

0%

20%

40%

60%

80%

100%

Private Public

67% 33% 95% 5% 100% 0.01%

Public vs. private repo ratios - filtered

Private Public

0%

20%

40%

60%

80%

100%

88% 12% 96% 4%

Another useful metric may be the ratio of organizations without any public repositories:

0%

20%

40%

60%

80%

100%

81%
73%

39%

Organizations without any public repo

This mirrors the overall ratio of public vs. private repositories.

Wiz Code Security Report 7

Wiz Code automatically inventories your code repositories and developer identities from
connected VCS platforms, giving you full visibility into what’s being built, by whom, and where
it’s deployed.

For each repository, Wiz shows visibility status, scan types (scheduled or PR-triggered), issues
detected, and connections to cloud resources via the Wiz Security Graph. Developer identities
are also analyzed for inactivity, excessive permissions, and more.

This centralized view simplifies governance and security across the development lifecycle.

Repositories: Key findings
Secrets in public repositories are only the tip of the iceberg

We still find secrets in public and private repositories. While it is heartening to see the number of secrets
drop between private and public repos (from 7% to 2%), even private repos are not a good place to store
secrets. Secrets must be encrypted and stored inside a secrets manager, a point which we also make in
the Wiz Security Best Practices Guide.

0%

20%

40%

60%

80%

100%

Avg private repos
with secrets

7%

86%

Organizations with
at least one private

repo with secret

61%

Organizations with
at least one public

repo with secret

2%

Avg public repos
with secrets

Against the best
practices, private
repositories are
used as a place
to store secrets

Secrets in repositories

Cloud keys represent a big part of exposed secrets

Not all secrets are created equal – some carry greater potential impact than others, if used to malicious advantage.
We are particularly interested in the secrets that attackers can use to perform a lateral movement to the cloud, and so
we compiled similar statistics on cloud keys:

0%

8%

6%

4%

2%

Private repos with secrets

1.3%

7%

Public repos with secrets

0.5%

2%

Cloud Keys All Secrets

Repositories with Cloud Keys

Wiz Code Security Report 8

https://www.wiz.io/academy/secret-scanning

The numbers confirm our suspicions that cloud keys, albeit in a smaller amount, can still be found in
private and public repositories. The number is likely even higher for the general population, since our data
is drawn from organizations protected by Wiz (Wiz has multiple policies and controls prompting users to
fix these issues).

Further analysis into the secret types yields three noteworthy observations. The first relates to the
differences between secret types in public vs private repositories. Second: the abundance of VCS tokens.
Third: the absolute dominance of SaaS API and cloud keys like Dropbox, SendGrid, and Databricks.

Point number one indicates a false sense of security when storing keys in private repos. Number 2
underscores the potential of lateral movement given the leakage of the initial VCS token. It is especially
disturbing to see GitHub Personal Access Tokens (PATs) heading the rankings in public repositories.
Finally, the dominance of SaaS tokens and cloud keys illustrates the tight integration between the VCS
and the cloud environments.

Secrets in Private Repositories

 API

 personal access token v2
 API Token
 PAT
 API Key
 Test API token
 Server-to-Server App Token
 Service Account Token
 PAT token
Other

Secrets in Public Repositories

 API Token
 personal access token v2
 Vault Service Token
 OAuth Secret
 OAuth Access Token
 Fine-grained PAT
 Client Secret
 Server-to-Server App Token
 API Token
 Key

 Legacy Workspace Token
 API Token
 User-to-Server App Token

Thanks to the context gleaned from Wiz Cloud, Wiz Code connects secrets found in code
repositories with the production cloud environment for quick exposure prioritization and
remediation. For example, SaaS keys found in VCS repositories can be effectively validated
against the actual cloud service.

There is a similar situation with sensitive data, in which we witness a more moderate decrease within
public repos:

0%

20%

40%

60%

80%

100%

4%

Avg private
repos with data

Organizations with at least
one private repo with data

Organizations with at least
one public repo with data

44%

3%

Avg public
repos with data

77%

Sensitive Data in Repositories

Wiz Code Security Report 9

Scripting languages are more popular than programming languages

Languages are an important code repository characteristic that affects the security of the resulting
product. Not only can it predict the amount and type of the application vulnerabilities, but also prepare
the product owner to make more informed decisions regarding the security tools used during the SDLC.
We compiled the language popularity numbers based on the language determination by GitHub API. The
following are the histograms of the most common languages (each appearing in over 1000 repositories).
The lists below show the top 10 most popular languages across private (on the left) and public (on the
right) repositories.

N
um

b
er of Rep

ositories

Languages (as supported by GitHub)

Public

1. Shell

2. JavaScript

3. Dockerfile

4. Python

5. Java

7. HTML

8. Makefile

9. CSS

10. HCL

6. TypeScript

Private

1. Shell

2. JavaScript

3. Python

4. Dockerfile

5. HTML

7. CSS

8. Java

9. C#

10. Makefile

6. HCL

Languages in private vs. public repositories

Numbers point to the relative popularity of scripts and markup languages, whereas Java, the most
popular compiled language, comes in at only seventh. This is true for both public and private repositories.
The absence of C and C++ languages in repositories is also somewhat surprising. This may explain or
corroborate the decrease in memory-related CWEs in recent years (see). In general, the
prevalence of scripting languages creates demand for appropriate security tools. For example, if we look
at the language categorization of Semgrep (a known light-weight SAST tool) rules in the default ,
we observe 530 Python rules vs only 56 C rules. Security and DevOps teams managing SDLC should
customize their toolchain to support the languages in the repositories.

Worth noting is that Dockerfile technology appears in over 8% of total repositories, pointing to the
prevalence of the containers as a deployment paradigm. Fixing the vulnerabilities and other issues only in
containers will not address the root cause issue. Thus, given the containers popularity, the ability to trace
the security issues from the deployed container back to the code line is crucial in modern security tools.

OWASP Top 25

 ruleset

Wiz’s deep risk assessment spans code to cloud using a unified policy engine—agentless for
cloud resources and integrated with code scanning in version control. Vulnerabilities, secrets,
sensitive data, and malware are detected with consistent policies, enriched with runtime and
cloud context, and mapped to the Wiz Security Graph for attack path analysis & prioritization.

Wiz Code Security Report 10

https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
https://semgrep.dev/p/default

CI/CD security: the story of insecure defaults
For this section on CI/CD security, we have focused exclusively on GitHub for the following reasons:

The way the CI/CD infra is implemented is different across the platform and would require different
data collection approaches.

GitHub is the most popular platform with the highest amount of studied attacks and therefore will be
a more interesting subject of exploration than other platforms.

One in every 10 organizations has GitHub Actions enabled

Although CI/CD infrastructure like GitHub Actions offers vast benefits, it also represents an additional
attack surface (i.e. 3rd-party GitHub actions, reusable workflows, CI/CD misconfigurations, etc.).
Surprisingly, only 12% of GitHub organizations enable actions at the organization level:

88% Organizations without actions

12% Organizations with actions

GitHub organizations and CICD workflows

This not only minimizes the attack surface, but also suggests the common usage of VCS as a static data
storage or to the contrary, as a space for developer ideation and collaboration without the pressure of
building/deploying the final product.

Around 80% of workflow permissions in repositories are insecure

When a workflow job is executing, it is assigned a token with certain permissions. There are two default
levels of permissions for the token as documented . Organization admins can set these permissions
at an enterprise, organization, or repository level. It is a good security practice to set these permissions to
READ to prevent malicious or accidental writing to a repository. Of course, sometimes this ability is
necessary (think linting workflows modifying source code), therefore, even though READ permissions
have been the default setting since 2022, WRITE permissions remain an option. Unfortunately, the vast
majority of repository workflows in GitHub have the worst default combination of permissions – allowed
approval of pull requests (PRs) AND the ability to write content into the repo:

here

The majority of
repository workflows
have the worst default
combination of
permissions: allow
approval of PRs and
able to write content

Write 80%

Read 1%

Read 9%

Write 10%

Cannot approve PRs

Can approve PRs

Workflow permissions in repositories

Wiz Code Security Report 11

https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#permissions-for-the-github_token

There are multiple ways to compromise an existing workflow, the primary methods being command
injection into a vulnerable workflow and malicious workflow dependency. Excessive permissions in
pipelines offer opportunities for attackers to perform code pushes from the compromised workflows,
and thus put additional pressure on detection of suspicious activity inside the CI/CD pipelines.

Branch protection is weak, false sense of security exists in public repos

Branch protection rules define a set of restrictions on collaborators’ actions on a branch. For example,
deciding which collaborators can force push or delete the branch and determine the push restrictions.
Branch protection mitigates multiple attacks, the primary being account compromise and impersonation
of legitimate users.

0%

20%

40%

60%

80%

100%

31%

Private Public

66%

Percentage of repositories with branch protection enabled

Numbers show the insufficient levels of rule protections in GitHub default branches. There is a significant
difference in numbers between the private and public repositories, which again points to a false sense of
security. Even for private repositories, credential stealing, and account takeovers are on the rise and this
additional protection is needed to stop attackers from committing changes into code.

Self-hosted runners in cloud present a serious risk to 35% of enterprises

There are two types of runners in GitHub that can perform CI/CD jobs: managed and self-hosted.
Managed runners are provisioned by GitHub infrastructure and have a high degree of tenant isolation (in
fact, a separate VM is created in Azure for every job and then destroyed). Self-hosted runners are
managed completely by the tenant and thus are considered less secure (This is a great primer on
self-hosted runners as an attack vector).

We find that over of GitHub repositories have self-hosted runners configured to run workflows. On
the tenant level, however, about of enterprises use at least one self-hosted runner. We have further
confirmed that most self-hosted runners are non-ephemeral and as such can be shared not only
between the jobs in the same repository flow, but between different repositories and even across
different GitHub organizations. Therefore, the impact of one compromised runner typically exceeds one
repository. The numbers show the prevalence of self-hosted runners and underscore the need to build
better security practices and robust defenses for this use case.

Self-hosted runners also represent an additional attack vector into your VCS and CI/CD systems. Ideally,
VMs and containers hosting a runner should be hardened and isolated and in general have better
security practices than other workloads in cloud. What we see, however, is the opposite – VMs with
runners installed have on average more High and Critical vulnerabilities than all other VMs, which is
contrary to the initial intuition:

article

5%
35%

Wiz Code Security Report 12

https://www.synacktiv.com/en/publications/hijacking-github-runners-to-compromise-the-organization

Vulnerabilities numbers in VMs with self-hosted runners

0%

5%

10%

15%

20%

25%

30%

0.00

5.00

10.00

15.00

20.00

25.00

30.00

High/Critical vulns (%) Average # of technologies

All VMs
9.80% 8.00

VMs with runner
24.50% 25.70

We dug deeper for the explanation and were yet
again surprised to learn that on average, VMs
with self-hosted runners had more software
packages installed. On average, 3 times more
technologies were recognized on VMs with
GitHub or GitLab runners compared to VMs
without. This, of course, explains the differences
in vulnerabilities, but not entirely explains why
users see CICD infrastructure as a target for
excess software. Given the sensitivity of CICD
workloads, we urge DevOps teams to harden
CICD workloads and avoid software bloating at all
costs to minimize the attack surface.

Wiz strengthens build and pipeline security by combining Wiz Code’s configuration scanning for
VCS and CI/CD infrastructure with runtime protection for CI/CD runners via the lightweight
eBPF-based Wiz Sensor. Designed for Kubernetes and Linux workloads, the Wiz Sensor provides
real-time detection of threats targeting CI/CD runners.

GitHub Actions – no limits

Usage of GitHub Actions is set at the organizational level. There are two crucial settings that control the
degree of action freedom:

Repositories: whether all/selected/none repositories are permitted to run actions.

Actions: whether all/selected/local actions are permitted.

The numbers show that once GitHub Actions are enabled at the org level, chances are they are enabled
at the repository level, too (“All repositories” is the most common setting). Moreover, most repositories
do not limit the actions that can be used by the repository workflow use. The most common
configuration is: enable all (external and internal) actions in all the repositories in the organization:

GitHub actions - degrees of freedom

W
hich actions are p

erm
itted

?

Actions are permitted on:

all actions /

workflows permitted

selected actions /

workflows permitted

local only actions /

workflows permitted

All repositories Selected repositories

80% 2%

17% 1%

0.2% 0%

This again shows the dangers of insecure defaults: once actions are enabled for the organizations, users
rarely change the scope of the actions which, which leaves them at the widest possible execution scope.

Wiz Code Security Report 13

Dangerous permission scopes are prevalent in GitHub Apps

GitHub Apps are designed to augment and extend the existing functionality and workflows on GitHub
with commercial, open source, and in-house tools. In fact, this is one of the ways Wiz Code integrates
with your VCS environment. After the initial rollout, GitHub Apps quickly gained popularity and became
one of the main ways to consume 3rd-party functionality directly in VCS.

When you install the app, you grant the app permissions to read or modify your repository and
organization data. Permissions are fine-grained and are grouped into scopes that deal with certain
groups of resources (secrets, pull_requests, issues, etc.), with each scope having READ or WRITE access
to its resources. As such, we are interested to see the presence of scopes and the access of each scope.

We observe the most popular scopes among the apps are metadata, pull requests and contents with all
the rest of the scopes trailing further behind:

0%

20%

40%

60%

80%

100%

Dangerous scopes:

pull_requests
and contents are
among three of
the most popular
scopes in GitHub
Apps

98% metadata

77% pull_requests

76% contents

49% statuses

48% checks

46% issues

42% members

34% administration

28% actions

25% deployments

20% repository_hooks

Permission scopes presence in apps

This is unfortunate, because pull_requests and contents are powerful scopes that allow read and
modification of the repository code. Naturally, the impact of any subsequent 3rd-party app compromise
(via supply chain, credential leak, or other means) is proportional to the app permissions. Finally, when
slicing the most popular scopes by access types, we observe that the “safest” scope are metadata and
emails with 100% of apps using it for READ only. On the contrary, workflows, pull_requests and
repository_hooks are the scopes with most WRITE access type (100%, 80%, 77% respectively):

Permission scope access type

100%80%60%40%20%0%

metadata

pull_requests

contents

statuses

checks

issues

members

administration

actions

deployments

repository_hooks

Read Write
Wiz Code provides an
extensive set of
configuration and
compliance checks,
implementing
frameworks such as
OpenSSF SCM Best
Practices, CIS GitHub
Benchmark, and others.
This set of controls
helps to ensure secure
configuration of your
VCS and CI/CD
environments.

Wiz Code Security Report 14

How Wiz Can Help
Wiz connects code and cloud to protect secrets and prevent incidents.

In the cloud, security practitioners must manage risks across the full environment. Secrets such as API
keys, credentials, and tokens often bridge these two worlds, making them high-value targets for attackers.
Wiz connects code and cloud through a single platform that enables organizations to identify, correlate,
and mitigate risks with a comprehensive approach.

The platform approach ensures secrets in code are not just detected but contextualized and secured.
Our Wiz Code offering identifies exposed secrets in repositories, while Wiz Cloud correlates them to
sensitive configurations, such as a public repository with a secret linked to an AWS identity. We then
determine whether that identity has admin privileges and access to sensitive customer data — access
which could be gained directly or through toxic combination of risk. In the latter scenario, our graph-
based approach will reveal the complex relationships between resources to spotlight validated attack
paths. With Wiz Defend, organizations monitor these identities in real-time to detect potential misuse,
such as suspicious access or exfiltration attempts, and prevent breaches before they happen. The
combined power of Wiz Code, Cloud, and Defend gives customers a unified way to assess risks in context
and rapidly respond to threats with confidence.

A critical metric for understanding the scope of this challenge is the proportion of secrets that are cloud
keys, as discussed earlier in the "Key Findings" section. We discovered that cloud keys represent a large
portion of exposed secrets. With cloud adoption skyrocketing, a significant percentage of exposed
secrets are tied directly to cloud environments, underscoring the importance of this correlation. Wiz not
only highlights these secrets but also provides visibility into their sensitivity and usage patterns, offering
stronger protection for cloud-native applications.

Platform approach: Protect secrets in code and prevent impact in cloud

This looks like a secret
detected in a code repository

1

But Wiz knows it's configured
actually as a public repository

2

And Wiz monitors these identities in real-time
to detect threats and prevent data exfiltration

3

And Wiz knows this secret is correlated to an identity in AWS
that has admin privileges and access to sensitive customer data

4

Wiz Code Security Report 15

Visit CloudVulnDB

In February 2025 the CloudVulnDB project
expanded its scope to include GitHub and
GitLab, in addition to traditional cloud service
providers such as AWS, GCP, and Azure.

Since its inception the database has existed
as an open project to list all known cloud
vulnerabilities and CSP security issues. The
addition of these two new platforms is
noteworthy because it underscores some of
the key themes of this report – namely, the
interconnectedness of modern-day tooling
and the need for security practitioners to be
able to search across the full environment to
uncover risk, without blind spots.

Wiz Code Security Report

Conclusion
The mission of the Wiz Research team is to view the cloud from the vantage point of an attacker and
leverage our observations to help the security community better combat critical risk. Incorporating code
security into these efforts makes sense, given how extensively today’s organizations have embraced
cloud-native approaches and subsequently fused the worlds of code and cloud. We should not look at
VCS and CI/CD security in isolation, for several reasons.

First, these systems are tightly integrated with production. The impact of an attack on code systems can
be amplified if the attacker manages to pivot to the production environment. Knowing and monitoring all
potential attack paths is imperative.

Second, some threats require production context as they are ultimately manifested either at
deployment or run time. Think, for example, about malware or a vulnerability presented in the container
image – only when the container is instantiated do we know whether the affected code is actually run
and with what privileges, what data access, etc. In other words, “context is king” for effective issue
prioritization. Modern applications exist as complex, evolving blueprints that span code repositories,
deployment pipelines, and cloud infrastructures. Vulnerabilities in code become inseparable from those
in cloud. Yet security is often implemented in silos or vertically, with various teams focusing on distinct
stages of application development, deployment, and runtime monitoring.

Attackers operate differently: they seek to exploit toxic combinations of risk in an effort to move laterally
across interconnected systems, without concern for any domain or tool boundaries. To stay ahead,
security must ensure that issues are addressed from the codebase through to the cloud environment.

https://www.cloudvulndb.org/

